Blind image deconvolution via salient edge selection and mean curvature regularization
نویسندگان
چکیده
Blind image deconvolution is an ill-posed problem since there exists infinite pairs of blur kernels and latent images. To obtain reasonable results this problem, most previous methods have emphasized the importance selecting salient edges for kernel estimation. In paper, a blind method based on explicit implicit selection proposed. Explicit edge achieved by using mutually guided filtering, while mean curvature regularization adopted to remove disadvantageous structures implicitly. Besides, proposed model can be efficiently optimized half-quadratic penalty filter. Extensive experiments show that performs favorably against state-of-the-art both synthetic real-world blurred
منابع مشابه
Non-blind Image Deconvolution with Adaptive Regularization
Ringing and noise amplification are the most dominant artifacts in image deconvolution. These artifacts can be reduced by introducing image prior into the deconvolution process. A regularization weighting factor can control strength of the regularization. Ringing and noise can be reduced significantly with the strong weighting factor, but details can be lost. We propose a nonblind image deconvo...
متن کاملRegularization of RIF blind image deconvolution
Blind image restoration is the process of estimating both the true image and the blur from the degraded image, using only partial information about degradation sources and the imaging system. Our main interest concerns optical image enhancement, where the degradation often involves a convolution process. We provide a method to incorporate truncated eigenvalue and total variation regularization ...
متن کاملRecursive blind image deconvolution via dispersion minimization
This paper presents an adaptive autoregressive (AR) approach to the blind image deconvolution problem which has several advantages over standard adaptive FIR filters. There is no need to figure out the optimum filter support when using an AR deconvolution filter because it is the same as the support of the blur. Thus there is no distortion introduced by the finite support of the FIR filter. Whi...
متن کاملBlind image deconvolution via dispersion minimization
In linear image restoration, the point spread function of the degrading system is assumed known even though this information is usually not available in real applications. As a result, both blur identification and image restoration must be performed from the observed noisy blurred image. This paper presents a computationally simple iterative blind image deconvolution method which is based on no...
متن کاملHigh-quality non-blind image deconvolution with adaptive regularization
1047-3203/$ see front matter 2011 Elsevier Inc. A doi:10.1016/j.jvcir.2011.07.010 ⇑ Corresponding author. E-mail addresses: [email protected] (J.-H. Lee Non-blind image deconvolution is a process that obtains a sharp latent image from a blurred image when a point spread function (PSF) is known. However, ringing and noise amplification are inevitable artifacts in image deconvolution since p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Signal Processing
سال: 2022
ISSN: ['0165-1684', '1872-7557']
DOI: https://doi.org/10.1016/j.sigpro.2021.108336